

SANYO Semiconductors **DATA SHEET**

LC87F7CC8A — CMOS IC FROM 128K byte, RAM 4096 byte on-chip 8-bit 1-chip Microcontroller

Overview

The LC877C00 series are an 8-bit single chip microcontroller with the following on-chip functional blocks. :

- CPU: operable at a minimum bus cycle time of 83.3ns
- 128K bytes Flash ROM (single 5V power supply, re-writeable on board)
- On-chip RAM: 4096 bytes
- LCD controller / driver
- 16-bit timer/counters (can be divided into 8-bit units)
- 16-bit timer / PWM (can be divided into two 8-bit timers)
- Four 8-bit timer with prescalers
- Timer for use as date/time clock
- Synchronous serial I/O port (with automatic block transmit / receive function)
- Asynchronous / synchronous serial I/O port
- 2 channel 12-bit PWM
- 12-channel × 8-bit AD converter
- High-speed clock counter
- System clock divider
- · Small signal detector
- 20 source 10-vectored interrupt system

All of the above functions are fabricated on a single chip.

Features

- ■Flash ROM
 - Single 5V power supply, writeable on-board.
 - Block erase in 128-byte units
 - 131072 × 8 bits (LC87F7CC8A)
 - * This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.
 - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
 - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.

■RAM

• 4096 × 9-bits (LC87F7CC8A)

■Minimum Bus Cycle Time

83.3ns (12MHz) VDD=4.5 to 5.5V
 100ns (10MHz) VDD=2.8 to 5.5V
 250ns (4MHz) VDD=2.2 to 5.5V

Note: The bus cycle time indicates ROM read time.

■Minimum Instruction Cycle Time (tCYC)

250 ns (12MHz)
 300 ns (10MHz)
 750 ns (4MHz)
 VDD=4.5 to 5.5V
 VDD=2.8 to 5.5V
 VDD=2.2 to 5.5V

■Ports

• Input/output ports

Data direction programmable for each bit individually: 20 (P1n, P70 to P73, P8n)

Data direction programmable in nibble units: 8 (P0n) (When N-channel open drain output is selected, data can be input in bit units.)

• Input ports: 2 (XT1, XT2)

• Output ports: 2 (PWM2, PWM3)

• LCD ports

Segment output: 32 (S00 to S15, S24 to S39)
Common output: 4 (COM0 to COM3)
Bias terminals for LCD driver: 3 (V1 to V3)

Other functions

Input/output ports: 32 (PAn, PBn, PDn, PEn)

 Input ports:
 7 (PLn)

 ● Oscillator pins:
 2 (CF1, CF2)

 ● Reset pin:
 1 (RES)

• Power supply: 6 (Vss1 to 3, Vpp1 to 3)

■LCD Controller

- Seven display modes are available (static, 1/2, 1/3, 1/4 duty \times 1/2, 1/3 bias)
- Segment output and common output can be switched to general purpose input/output ports.

■Small Signal Detection (MIC signals etc)

- Counts pulses with the level which is greater than a preset value
- 2 bit counter

■Timers

• Timer 0: 16-bit timer / counter with capture register

Mode 0: 2 channel 8-bit timer with programmable 8-bit prescaler and 8-bit capture register

Mode 1: 8-bit timer with 8-bit programmable prescaler and 8-bit capture register

+8-bit counter with 8-bit capture register

Mode 2: 16-bit timer with 8-bit programmable prescaler and 16-bit capture register

Mode 3: 16-bit counter with 16-bit capture register

• Timer 1: PWM / 16-bit timer/counter with toggle output function

Mode 0: 8-bit timer with 8-bit prescaler (and toggle output) +8-bit timer / counter with 8-bit prescaler (and toggle output)

Mode 1: 2 channel 8-bit PWM with 8-bit prescaler

Mode 2: 16-bit timer/counter with 8-bit prescaler (and toggle output)

(Toggle output also possible using the lower order 8-bits)

Mode 3: 16-bit timer with 8-bit prescaler (and toggle output)

(The lower order 8 bits can be used as PWM output)

Continued from preceding page.

- Timer 4: 8-bit timer with 6-bit prescaler
- Timer 5: 8-bit timer with 6-bit prescaler
- Timer 6: 8-bit timer with 6-bit prescaler (and toggle output)
- Timer 7: 8-bit timer with 6-bit prescaler (and toggle output)
- Base Timer
 - 1) The clock signal can be selected from any of the following: Sub-clock (32.768kHz crystal oscillator), system clock, and prescaler output from timer 0
 - 2) Interrupts of five different time intervals are possible.

■High-speed Clock Counter

- Countable up to 20MHz clock (when using 10MHz main clock)
- Real time output

■SIO

- SIO 0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first is selectable
 - 2) Internal 8-bit baud-rate generator (fastest clock period 4/3 tCYC)
 - 3) Consecutive automatic data communication (1 to 256 bits)
- SIO 1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8 bit serial I/O (2-wire or 3-wire, transmit clock 2 to 512 tCYC)
 - Mode 1: Asynchronous serial I/O (half duplex, 8 data bits, 1 stop bit, baud rate 8 to 2048 tCYC)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, transmit clock 2 to 512 tCYC)
 - Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)
- ■AD Converter: 8-bits × 12 channels
- ■PWM: 2 Channels Multi-frequency 12-bit PWM
- ■Remote Control Receiver Circuit (connected to P73/INT3/T0IN terminal)
 - Noise rejection function (noise rejection filter's time constant can be selected from 1/32/128 tCYC)

■Watchdog Timer

- The watching time period is determined by an external RC.
- Watchdog timer can produce interrupt or system reset
- ■Interrupts: 20 sources, 10 vectors
 - 1) Three priority (low, high, and highest) multiple interrupts are supported. During interrupt handling, an equal or lower priority interrupt request is postponed.
 - 2) If interrupt requests to two or more vector addresses occur at once, the higher priority interrupt takes precedence. In the case of equal priority levels, the vector with the lowest address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L
4	0001BH	H or L	INT3/Base timer0 /Base timer1
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0
8	0003BH	H or L	SIO1
9	00043H	H or L	ADC/MIC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM2, PWM3

- Priority level: X > H > L
- For equal priority levels, vector with lowest address takes precedence.

■Subroutine Stack Levels: 2048 levels max

Stack is located in RAM.

■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 tCYC execution time)
16 tCYC execution time)
16 tCYC execution time)
12 tCYC execution time)
12 tCYC execution time)

■Oscillation Circuits

- On-chip RC oscillation for system clock use.
- CF oscillation for system clock use. (Rf built in, Rd external)
- Crystal oscillation low speed system clock use. (Rf built in, Rd external)
- On-chip frequency variable RC oscillation circuit for system clock use.

■System Clock Divider Function

- Low power consumption operation is available
- Minimum instruction cycle time (300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, 76.8μs can be switched by program (when using 10MHz main clock)

■Standby Function

• HALT mode

HALT mode is used to reduce power consumption. During the HALT mode, program execution is stopped but peripheral circuits keep operating (some parts of serial transfer operation stop).

- 1) Oscillation circuits are not stopped automatically.
- 2) Released by the system reset or interrupts.
- HOLD mode

HOLD mode is used to reduce power consumption. Program execution and peripheral circuits are stopped.

- 1) CF, RC, X'tal and multi-frequency RC oscillation circuits stop automatically.
- 2) Released by any of the following conditions.
 - (1) Low level input to the reset pin
 - (2) Specified level input to one of INT0, INT1, and INT2
 - (3) Port 0 interrupt
- X'tal HOLD made

X'tal HOLD mode is used to reduce power consumption. Program execution is stopped.

All peripheral circuits except the base timer are stopped.

- 1) CF, RC and multi-frequency RC oscillation circuits stop automatically.
- 2) Crystal oscillator operation is kept in its state at HOLD mode inception.
- 3) Released by any of the following conditions
 - (1) Low level input to the reset pin
 - (2) Specified level input to one of INT0, INT1, and INT2
 - (3) Port 0 interrupt
 - (4) Base-timer interrupt

■Package Form

QFP80 (14 × 14): Lead-free type
TQFP80J (12 × 12): Lead-free type

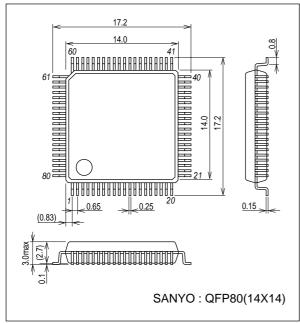
■Development Tools

• Evaluation chip: LC87EV690

 \bullet Emulator: EVA62S + ECB876600D + SUB877100 + POD80QFP(14 × 14) or POD80SQFP

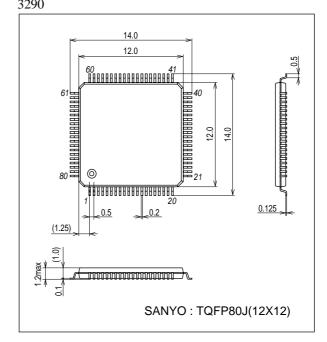
ICE-B877300 + SUB877100 + POD80QFP(14 × 14) or POD80SQFP

• Flash ROM write adapter: W87F71256QF or W87F71256SQ

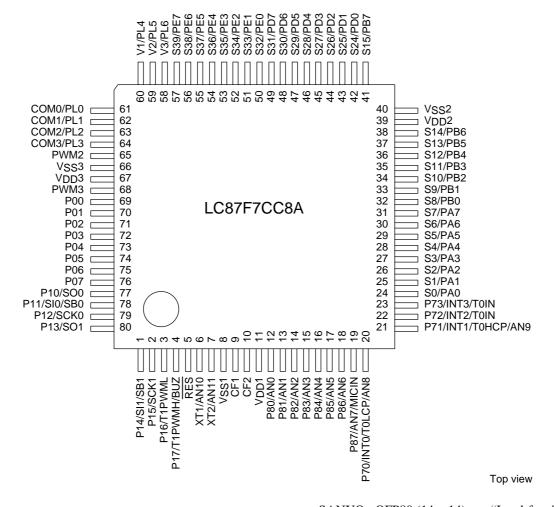

■Same Package and Pin Assignment as Mask ROM Version.

- 1) LC877C00 series options can be set by using flash ROM data. Thus the board used for mass production can be used for debugging and evaluation without modifications.
- 2) If the program for the mask ROM version is used, the usable ROM/RAM capacity is the same as the mask ROM version.

Package Dimensions

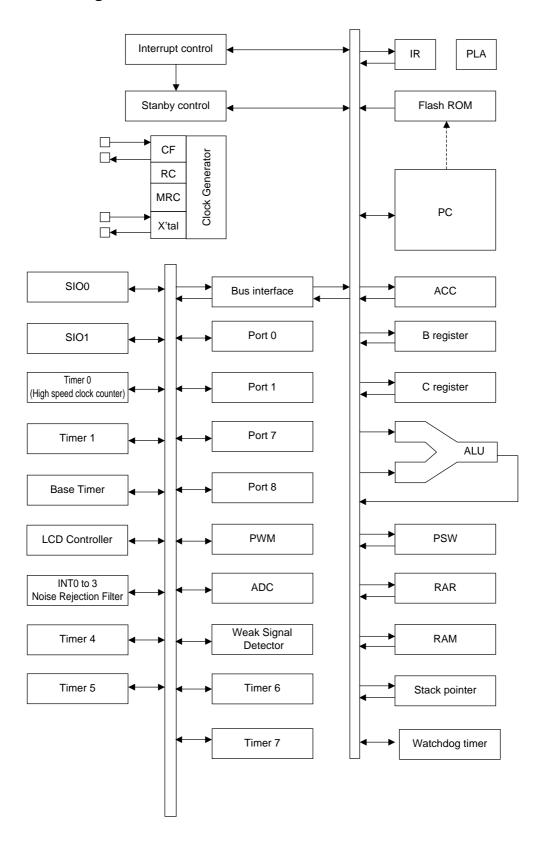

unit: mm (typ)

3255



Package Dimensions

unit: mm (typ)



Pin Assignment

SANYO : QFP80 (14×14) "Lead-free Type" SANYO : TQFP80J (12×12) "Lead-free Type"

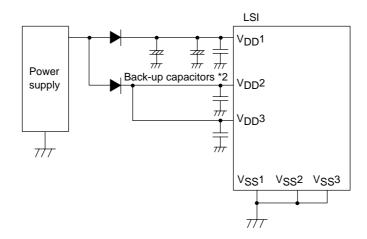
System Block Diagram

Pin Description

Pin name	I/O			Desc	cription				Option
V _{SS} 1, V _{SS} 2, V _{SS} 3	-	Power supply (-)							No
V _{DD} 1, V _{DD} 2 V _{DD} 3	-	Power supply (+))						No
PORT0	I/O	8-bit input/output	port						Yes
P00 to P07		Data direction pr	ogrammable in	nibble units					
		Use of pull-up re	sistor can be sp	ecified in nibble	units				
		• Input for HOLD r	elease						
		• Input for port 0 in	nterrupt						
		Other functions							
		P05: clock outpu	t (system clock/	can selected fro	om sub clock)				
		P06: timer 6 togg	gle output						
		P07: timer 7 togg	gle output						
PORT1	I/O	8-bit input/output	port						Yes
P10 to P17		Data direction pr	ogrammable for	each bit					
		Use of pull-up re	sistor can be sp	ecified for each	bit individually				
		Other pin functio	ns						
		P10 SIO0 data o	utput						
		P11 SIO0 data ir	nput or bus input	t/output					
		P12 SIO0 clock i	input/output						
		P13 SIO1 data o	utput						
		P14 SIO1 data ir	nput or bus inpu	t/output					
		P15 SIO1 clock i	input/output						
		P16: Timer 1 PW	/ML output						
		P17: Timer 1 PW	/MH output/buzz	zer output					
PORT7	I/O	4-bit Input/output	t port						No
P70 to P73		Data direction ca	n be specified f	or each bit					
		Use of pull-up re	sistor can be sp	ecified for each	bit individually				
		Other functions							
		P70: INT0 input/	HOLD release ir	nput/timer0L cap	pture input/outpu	t for watchdog t	timer		
		P71: INT1 input/	HOLD release ir	nput/timer0H ca	pture input				
		P72: INT2 input/	HOLD release ir	nput/timer 0 eve	ent input/timer0L	capture input			
		P73: INT3 input(noise rejection f	ilter attached)/ti	mer 0 event inpu	ıt/timer0H captu	ıre input		
		AD input port: AN	8(P70), AN9(P7	1)					
		Interrupt detection	n selection	1	1		1		
			Rising	Falling	Rising and falling	H level	L level		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
	1	INT3	enable	enable	enable	disable	disable	1	

Pin name	I/O	Description	Option
PORT8	I/O	8-bit Input/output port	No
P80 to P87		Input/output can be specified for each bit individually	
		Other functions:	
		AD input port: AN0 to AN7	
		Small signal detector input port: MICIN(P87)	
S0/PA0 to	I/O	Segment output for LCD	No
S7/PA7		Can be used as general-purpose input/output port (PA)	
S8/PB0 to	I/O	Segment output for LCD	No
S15/PB7		Can be used as general-purpose input/output port (PB)	
S24 /PD0 to	I/O	Segment output for LCD	No
S31/PD7		Can be used as general-purpose input/output port (PD)	
S32/PE0 to	I/O	Segment output for LCD	No
S39/PE7		Can be used as general-purpose input/output port (PE)	
COM0/PL0 to	I/O	Common output for LCD	No
COM3/PL3		Can be used as general-purpose input port (PL)	
V1/PL4 to	I/O	LCD output bias power supply	No
V3/PL6		Can be used as general-purpose input port (PL)	
PWM2	0	PWM2 output port	No
PWM3	0	PWM3 output port	No
RES	1	Reset terminal	No
XT1	ı	Input for 32.768kHz crystal oscillation	No
		Other functions:	
		General-purpose input port	
		AD input port: AN10	
		• When not in use, connect to V _{DD} 1	
XT2	I/O	Output for 32.768kHz crystal oscillation	No
		Other functions:	
		General-purpose input port	
		AD input port: AN11	
		When not in use, set to oscillation mode and leave open	
CF1	1	Input terminal for ceramic oscillator	No
CF2	0	Output terminal for ceramic oscillator	No

Port Output Types


Port form and pull-up resistor options are shown in the following table.

Port status can be read even when port is set to output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	each bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	None
P10 to P17	each bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	None	Nch-open drain	Programmable
P71 to P73	-	None	CMOS	Programmable
P80 to P87	-	None	Nch-open drain	None
S0/PA0 to S15/PB7 S24/PD7 to S39/PE7	-	None	CMOS	Programmable
COM0/PL0 to COM3/PL3	-	None	Input only	None
V1/PL4 to V3/PL6	-	None	Input only	None
PWM2, PWM3	-	None	CMOS	None
XT1	-	None	Input only	None
XT2	-	None	Output for 32.768kHz crystal oscillation	None

Note 1: Attachment of Port0 programmable pull-up resistors is controllable in nibble units (P00 to 03, P04 to 07).

*1: Connect as follows to reduce noise on V_{DD}. V_{SS}1, V_{SS}2, and V_{SS}3 must be connected together and grounded.

*2: The power supply for the internal memory is V_{DD}1 but it uses the V_{DD}2 as the power supply for ports. When the V_{DD}2 is not backed up, the port level does not become "H" even if the port latch is in the "H" level. Therefore, when the V_{DD}2 is not backed up and the port latch is "H" level, the port level is unstable in the HOLD mode, and the back up time becomes shorter because the through current runs from V_{DD} to GND in the input buffer. If V_{DD}2 is not backed up, output "L" by the program or pull the port to "L" by the external circuit in the HOLD mode so that the port level becomes "L" level and unnecessary current consumption is prevented.

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

	Darameter	Cumphal	Din/Demorks	Conditions			Spec	cification	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Su	pply voltage	V _{DD} max	$V_{DD}1$, $V_{DD}2$, $V_{DD}3$	$V_{DD}1=V_{DD}2=V_{DD}3$		-0.3		+6.5	
l '	pply voltage LCD	VLCD	V1/PL4, V2/PL5, V3/PL6	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		V _{DD}	
Inp	ut voltage	VI	Port L XT1, XT2, CF1, RES			-0.3		V _{DD} +0.3	٧
	ut/Output tage	V _{IO} (1)	Ports 0, 1, 7, 8Ports A, B, D, EPWM2, PWM3			-0.3		V _{DD} +0.3	
	Peak output	IOPH(1)	Ports 0,1	CMOS output selected Current at each pin		-10			
	current	IOPH(2)	Ports 71,72,73	Current at each pin		-5			
		IOPH(3)	• Ports A, B, D, E • PWM2, PWM3	Current at each pin		-5			
current	Average output	IOMH(1)	Ports 0,1	CMOS output selected Current at each pin		-7.5			
tput	current	IOMH(2)	Ports 71, 72, 73	Current at each pin		-3			
High level output current	(Note 1-1)	IOMH(3)	• Ports A, B, D, E • PWM2, PWM3	Current at each pin		-3			
High I	Total output	∑IOAH(1)	• Ports 0, 1 • PWM2, PWM3	Total of all pins		-25			
	current	∑IOAH(2)	Port 7	Total of all pins		-10			
		∑IOAH(3)	Ports A, B,	Total of all pins		-25			
		∑IOAH(4)	Ports D, E	Total of all pins		-25			
		∑IOAH(5)	Ports A, B, D, E	Total of all pins		-45			mA
	Peak	IOPL(1)	Ports 0, 1	Current at each pin				20	
	output	IOPL(2)	Ports 7,8	Current at each pin				10	
	current	IOPL(3)	• Ports A, B, D, E • PWM2, PWM3	Current at each pin				10	
rent	Average	IOML(1)	Ports 0, 1	Current at each pin				15	
t cur	output	IOML(2)	Ports 7, 8	Current at each pin				7.5	
outpui	current (Note 1-1)	IOML(3)	• Ports A, B, D, E • PWM2, PWM3	Current at each pin				7.5	
Low level output current	Total output	∑IOAL(1)	• Ports 0, 1 • PWM2, PWM3	Total of all pins				45	
	current	Σ IOAL(2)	Ports 7, 8	Total of all pins				15	
		∑IOAL(3)	Ports A, B	Total of all pins				45	
		Σ IOAL(4)	Ports D, E	Total of all pins				45	
		∑IOAL(5)	Ports A, B, D, E	Total of all pins				80	
Ма	ximum power	Pd max	QFP80(14×14)	Ta = -20 to +70°C				381	m\^/
cor	nsumption		TQFP80J(12×12)					325	mW
	erating nperature	Topr				-20		+70	
Sto	orage nperature	Tstg				-55		+125	°C

Note 1-1: Average output current indicates average value for 100ms term.

Allowable Operating Range at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

	Operati		20 0 10 170 0, 133	1 , 20-	, 22.	Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	0.245µs≤ tCYC≤ 200µs	DD C 7	4.5	71	5.5	
supply voltage	V _{DD} (2)		0.294µs≤ tCYC≤ 200µs		2.8		5.5	
range (Note2-1)	V _{DD} (3)		0.735μs≤ tCYC≤ 200μs		2.2		5.5	
Supply voltage range in Hold mode	VHD	V _{DD} 1	Keep RAM and register data in HOLD mode.		2.0		5.5	
Input high voltage	V _{IH} (1)	• Ports 0, 8 • Ports A, B, D, E, L	Output disable	2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Port 1Ports 71, 72, 73P70port input/interrupt	Output disable	2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	P87 small signal input	Output disable	2.2 to 5.5	0.75V _{DD}		V_{DD}	
	V _{IH} (4)	Port 70 Watchdog timer	Output disable	2.2 to 5.5	0.9V _{DD}		V _{DD}	V
	V _{IH} (5)	XT1, XT2, CF1, RES		2.2 to 5.5	0.75V _{DD}		V_{DD}	
Input low voltage	V _{IL} (1)	• Ports 0, 8 • Ports A, B, D, E, L	Output disable	4.0 to 5.5	VSS		0.15V _{DD} +0.4	
	V _{IL} (2)			2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	• Port 1 • Ports 71, 72, 73	Output disable	4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
	V _{IL} (4)	P70 port input/interrupt		2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (5)	Port 87 small signal Input	Output disable	2.2 to 5.5	V _{SS}		0.25V _{DD}	
	V _{IL} (6)	Port 70 Watchdog timer	Output disable	2.2 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (7)	XT1, XT2, CF1, RES		2.8 to 5.5	V _{SS}		0.25V _{DD}	
Operation	tCYC			4.5 to 5.5	0.245		200	
cycle time				2.8 to 5.5	0.294		200	μs
(Note 2-2)				2.2 to 5.5	0.735		200	
External	FEXCF(1)	CF1	CF2 open	4.5 to 5.5	0.1		12	
system clock			 system clock divider :1/1 external clock DUTY = 50 ± 5% 	2.8 to 5.5	0.1		10	
frequency				2.2 to 5.5	0.1		4	MHz
			• CF2 open	4.5 to 5.5	0.2		24.4	2
			system clock divider :1/2	2.8 to 5.5	0.2		20	
				2.2 to 5.5	0.2		8	
Oscillation frequency range	FmCF(1)	CF1, CF2	12MHz ceramic resonator oscillation See Fig. 1.	4.5 to 5.5		12		
(Note 2-3)	FmCF(2)		10MHz ceramic resonator oscillation See Fig. 1.	2.8 to 5.5		10		
	FmCF(3)		4MHz ceramic resonator oscillation See Fig. 1.	2.2 to 5.5		4		MHz
	FmRC		RC oscillation	2.2 to 5.5	0.3	1.0	2.0	
	FmMRC		Frequency variable RC oscillation	2.2 to 5.5		16		
	FsX'tal	XT1, XT2	32.768kHz crystal resonator oscillation See Fig. 2.	2.2 to 5.5		32.768		kHz

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-2: Oscillation frequency and Operation cycle time (tCYC) rerationship: 1/1divide-3/FmCF, 1/2divide-6/FmCF

Note 2-3: The parts value of oscillation circuit is shown in Table 1 and Table 2.

Electrical Characteristics at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

				DD	55	0:6:	4!	
Parameter	Symbol	Pin/Remarks	Conditions	\/ D/I	min	Specifica		mit
High level input	I _{IH} (1)	• Ports 0, 1, 7, 8	Output disabled	V _{DD} [V]	min	typ	max	unit
current		• Ports A, B, D, E, L • PWM2, PWM3	Pull-up resister OFF. VIN=VDD (including OFF state leak current of the output Tr.)	2.2 to 5.5			1	
	I _{IH} (2)	RES	V _{IN} =V _{DD}	2.2 to 5.5			1	
	I _{IH} (3)	XT1, XT2	When configured as an input port. V _{IN} =V _{DD}	2.2 to 5.5			1	
	I _{IH} (4)	CF1	V _{IN} =V _{DD}	2.2 to 5.5			15	
	I _{IH} (5)	P87/AN7/MICIN small signal input	V _{IN} =V _{BIS} +0.5V (V _{BIS} : Bias voltage)	4.5 to 5.5	5	10	20	
Low level input current	I _{IL} (1)	• Ports 0, 1, 7, 8 • Ports A, B, D, E, L • PWM2, PWM3	Output disabled Pull-up resister OFF. VIN=VSS (including OFF state leak current of the output Tr.)	2.2 to 5.5	-1			μА
	I _{IL} (2)	RES	V _{IN} =V _{SS}	2.2 to 5.5	-1			
	I _{IL} (3)	XT1,XT2	When configured as an input port. V _{IN} =V _{SS}	2.2 to 5.5	-1			
	I _{IL} (4)	CF1	V _{IN} =V _{SS}	2.2 to 5.5	-15			
	I _{IL} (5)	P87/AN7/MICIN small signal input	V _{IN} =V _{BIS} -0.5V (V _{BIS} : Bias voltage)	4.5 to 5.5	-20	-10	-5	
High level output	V _{OH} (1)	Ports 0, 1: CMOS	I _{OH} =-1.0mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	output option	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	1	I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	Port 7	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (5)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (6)	• Ports A, B, D, E,	I _{OH} =-1.0mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (7)	• PWM2, PWM3	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (8)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	1	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (3)		I _{OL} =1.0mA	2.2 to 5.5			0.4	V
	V _{OL} (4)	Ports 7, 8	I _{OL} =1.6mA	3.0 to 5.5			0.4	V
	V _{OL} (5)		I _{OL} =1.0mA	2.2 to 5.5			0.4	
	V _{OL} (6)	• Ports A, B, D, E,	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (7)	• PWM2, PWM3	I _{OL} =1.0mA	2.2 to 5.5			0.4	
LCD output voltage regulation	VODLS	S0 to S15, S24 to S39	I _O =0mA VLCD, 2/3VLCD, 1/3VLCD level output See Fig. 8.	2.2 to 5.5	0		±0.2	
	VODLC	COM0 to COM3	I _O =0mA VLCD, 2/3VLCD, 1/2VLCD 1/3VLCD level output See Fig. 8.	2.2 to 5.5	0		±0.2	
LCD bias resistor	RLCD(1)	Resistance per one bias resistor	See Fig. 8.	2.2 to 5.5		60		
	RLCD(2)	Resistance per one bias resistor 1/2R mode	See Fig. 8.	2.2 to 5.5		30		kΩ

Continued from preceding page.

Description	Oh. al	Pin/Remarks	Odisting			Specificat	tion	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resistance of	Rpu	• Ports 0, 1, 7	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
pull-up MOS Tr.		• Ports A, B, D, E		2.2 to 4.5	18	50	150	kΩ
Hysterisis voltage	VHYS(1)	• Ports 1, 7 • RES		2.2 to 5.5		0.1V _{DD}		V
	VHYS(2)	Port 87 small signal input		2.2 to 5.5		0.1V _{DD}		v
Pin capacitance	СР	All pins	• All Other Terminals Connected To V _{SS} . • f=1MHz • Ta=25°C	2.2 to 5.5		10		pF
Input sensitivity	Vsen	Port 87 small signal input		2.2 to 5.5	0.12V _{DD}			Vp-p

Serial I/O Characteristics at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		Parameter	Symbol	Pin/Remarks	Conditions			Spec	ification	
	. '	arameter	Gymbol	Till/Itemarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
		Low level	tSCKL(1)				1			
	ock	pulse width	1001(11(4)							
	Input clock	High level pulse width	tSCKH(1)		0. 6	2.2 to 5.5	1			tCYC
Serial clock	dul	puise wiuiii	tSCKHA(1)		Continuous data transmission/reception mode See Fig. 6. (Note 4-1-2)		4			loro
ialo		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
Se	×	Low level pulse width	tSCKL(2)		• See Fig. 6.			1/2		tSCK
	Output clock	High level pulse width	tSCKH(2)			2.2 to 5.5		1/2		ISON
	Out		tSCKHA(2)		Continuous data transmission/reception mode CMOS output selected See Fig. 6.		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of SIOCLK. See Fig. 6.	2.2 to 5.5	0.03			
Serial	Da	ta hold time	thDI(1)			2.2 to 5.5	0.03			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.05	μѕ
Serial output	Input		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.2 to 5.5			1tCYC +0.05	
Seria	Output clock		tdD0(3)		(Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.15	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

		Parameter	Cumbal	Pin/Remarks	Conditions			Spec	ification	
		Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.2 to 5.5	1			10)(0
clock	lu	High level pulse width	tSCKH(3)	1			1			tCYC
Serial clock	ş	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 6.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.2 to 5.5		1/2		+00k
	nO	High level pulse width	tSCKH(4)					1/2		tSCK
Serial input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK. See Fig. 6.	2.2 to 5.5	0.03			
Serial	Da	ta hold time	thDI(2)			2.2 to 5.5	0.03			
Serial output	Οι	tput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.2 to 5.5			(1/3)tCYC +0.05	μѕ

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_SS1 = V_SS2 = V_SS3 = 0V$

Parameter	Cumbal	Pin/Remarks	Conditions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72) INT4(P30 to P33) INT5(P34 to P35)	Condition that interrupt is accepted Condition that event input to timer 0 is accepted	2.2 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P73) (Noise rejection ratio is 1/1.)	Condition that interrupt is accepted Condition that event input to timer 0 is accepted	2.2 to 5.5	2			1000
	tPIH(3) tPIL(3)	INT3(P73) (Noise rejection ratio is 1/32.)	Condition that interrupt is accepted Condition that event input to timer 0 is accepted	2.2 to 5.5	64			tCYC
	tPIH(4) tPIL(4)	INT3(P73) (Noise rejection ratio is 1/128.)	Condition that interrupt is accepted Condition that event input to timer 0 is accepted	2.2 to 5.5	256			
	tPIL(5) tPIL(5)	MICIN(P87)	Condition that signal is accepted to small signal detection counter.	2.2 to 5.5	1			
	tPIL(6)	RES	Condition that reset is accepted	2.2 to 5.5	200			μs

AD Converter Characteristics at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Cumbal	Pin/Remarks	Conditions			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80) to		3.0 to 5.5		8		bit
Absolute precision	ET	AN7(P87), AN8(P70),	(Note 6-1)	3.0 to 5.5			±1.5	LSE
Conversion time	TCAD	AN9(P71), AN10(XT1),	AD conversion time=32 × tCYC (ADCR2=0) (Note 6-2)	4.5 to 5.5	15.62 (tCYC=		97.92 (tCYC=	
		AN11(XT2)	, , , , , , , , , , , , , , , , , , , ,		0.488µs)		3.06µs)	
					23.52		97.92	
				3.0 to 5.5	(tCYC=		(tCYC=	μs
					0.735μs)		3.06µs)	
			AD conversion time=64 × tCYC		18.82		97.92	
			(ADCR2=1) (Note 6-2)	4.5 to 5.5	(tCYC=		(tCYC=	
					0.294μs)		1.53µs)	
					47.04		97.92	
				3.0 to 5.5	(tCYC=		(tCYC=	
					0.735μs)		1.53µs)	
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V_{DD}	V
Analog port	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

Note 6-1: Absolute precision does not include quantizing error ($\pm 1/2$ LSB).

Note 6-2: Conversion time means time from executing AD conversion instruction to loading complete digital value to register.

Consumption Current Characteristics at Ta = -20 °C to +70 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V

Danamatan	Oh. al	Pin/	Condition	Specification				
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Current consumption during normal operation (Note 7-1)	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz ceramic resonator oscillation FsX'tal=32.768kHz crystal oscillation System clock: CF 12MHz oscillation Frequency variable RC oscillation stopped Internal RC oscillation stopped. Divider: 1/1	4.5 to 5.5		7.2	20	
	IDDOP(2)		FmCF=10MHz ceramic resonator oscillation FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		6.6	16.5	
	IDDOP(3)		System clock: CF 10MHz oscillation Frequency variable RC oscillation stopped	3.0 to 3.6		3.8	9.6	
	IDDOP(4)		Internal RC oscillation stopped. Divider: 1/1	2.8 to 3.0		2.5	7.4	
	IDDOP(5)		FmCF=4MHz ceramic resonator oscillation FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		2.5	6.3	
	IDDOP(6)		System clock: CF 4MHz oscillation Internal RC oscillation stopped.	3.0 to 3.6		1.4	3.5	mA
	IDDOP(7)		Frequency variable RC oscillation stopped Divider:1/1	2.2 to 3.0		0.9	2.7	
	IDDOP(8)		FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		0.75	3.1	
	IDDOP(9)		Frequency variable RC oscillation stopped System clock: RC oscillation	3.0 to 3.6		0.4	1.7	
	IDDOP(10)		• Divider:1/2	2.2 to 3.0		0.28	1.35	
	IDDOP(11)		FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		1.3	.3 5.4	
	IDDOP(12)		•Internal RC oscillation stopped. •System clock: 1MHz with frequency variable	3.0 to 3.6		0.7 3.1		
	IDDOP(13)		RC oscillation •Divider:1/2	2.2 to 3.0		0.5	2.4	
	IDDOP(14)		FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		35	115	
	IDDOP(15)		System clock: 32.768kHz Internal RC oscillation stopped.	3.0 to 3.6		18	65	μΑ
	IDDOP(16)		Frequency variable RC oscillation stopped Divider:1/2	2.2 to 3.0		12	46	
Current consumption during HALT mode (Note 7-1)	IDDHALT(1)		HALT mode • FmCF=12MHz ceramic resonator oscillation • FsX'tal=32.768kHz crystal oscillation • System clock: CF 12MHz oscillation • Internal RC oscillation stopped. • Frequency variable RC oscillation stopped • Divider: 1/1	4.5 to 5.5		3	7.8	
	IDDHALT(2)		HALT mode • FmCF=10MHz ceramic resonator oscillation	4.5 to 5.5		2.6	5.9	
	IDDHALT(3)		FsX'tal=32.768kHz crystal oscillation System clock: CF 10MHz oscillation Integral BC oscillation stopped.	3.0 to 3.6		1.4	3.3	mA
	IDDHALT(4)		Internal RC oscillation stopped. Frequency variable RC oscillation stopped Divider: 1/1	2.8 to 3.0		1	2.5	
	IDDHALT(5)		HALT mode • FmCF=4MHz ceramic resonator oscillation	4.5 to 5.5		1.15	2.65	
	IDDHALT(6)		FsX'tal=32.768kHz crystal oscillation System clock: CF 4MHz oscillation	3.0 to 3.6		0.6	1.5	
	IDDHALT(7)		Internal RC oscillation stopped. Frequency variable RC oscillation stopped Divider: 1/1	2.2 to 3.0		0.4	1.1	

Note 7-1: The currents through the output transistors and the pull-up MOS transistors are ignored.

Continued from preceding page.

Parameter	Symbol	Pin/	Conditions		Specification				
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Current consumption	IDDHALT(8)	V _{DD} 1 =V _{DD} 2	HALT mode • FmCF=0Hz (Oscillation stop)	4.5 to 5.5		0.37	1.3		
during HALT mode	IDDHALT(9)	=V _{DD} 3	FsX'tal=32.768kHz crystal oscillation System clock: RC oscillation Frequency variable RC oscillation stopped Divider: 1/2	3.0 to 3.6		0.2	0.75		
(Note 7-1)	IDDHALT(10)			2.2 to 3.0		0.13	0.54	mA	
	IDDHALT(11)		HALT mode • FmCF=0Hz (No oscillation)	4.5 to 5.5		1	3.5		
	IDDHALT(12)		FsX'tal=32.768kHz crystal oscillation Internal RC oscillation stopped.	3.0 to 3.6		0.55	2		
	IDDHALT(13)		System clock: 1MHz with frequency variable RC oscillation Divider :1/2	2.2 to 3.0		0.37	1.5		
	IDDHALT(14)		HALT mode • FmCF=0Hz (Oscillation stop) • FsX'tal=32.768kHz crystal oscillation • System clock: 32.768kHz • Internal RC oscillation stopped. • Frequency variable RC oscillation stopped • Divider: 1/2	4.5 to 5.5		18.5	68		
	IDDHALT(15)			3.0 to 3.6		10	38		
	IDDHALT(16)			2.2 to 3.0		6.5	26		
Current	IDDHOLD(1)	V _{DD} 1	HOLD mode	4.5 to 5.5		0.05	20		
consumption	IDDHOLD(2)		• CF1=V _{DD} or open	3.0 to 3.6		0.03	12	μΑ	
during HOLD mode	IDDHOLD(3)		(when using external clock)	2.2 to 3.0		0.02	8		
Current consumption	IDDHOLD(4)		Date/time clock HOLD mode • CF1=V _{DD} or open	4.5 to 5.5		16	58		
during Date/time clock	IDDHOLD(5)		(when using external clock) • FmX'tal=32.768kHz crystal oscillation	3.0 to 3.6		8.5	32		
HOLD mode	IDDHOLD(6)					5	20		

Note 7-1: The currents through the output transistors and the pull-up MOS transistors are ignored.

F-ROM Write Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Danamatan	0 1 1	Pin/	O - m aliai - m -		Specification			
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
On-board	IDDFW(1)	V _{DD} 1	128-byte writing	3.0 to 5.5		25	40	mA
writing current			Including erase time current					ША
Writing time	tFW(1)		128-byte writing					
			Including data erase time	3.0 to 5.5		22.5	45	ms
Excluding time		 Excluding time to fetch 128 byte data 						

Characteristics of a Sample Main System Clock Oscillation Circuit

The characteristics in the table bellow is based on the following conditions:

- (1) Use the standard evaluation board SANYO has provided.
- (2) Use the peripheral parts with indicated value externally.
- (3) The peripheral parts value is a recommended value of oscillator manufacturer

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

Nominal	Nominal Vendor Frequency Name	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Demode	
Frequency			C1 [pF]	C2 [pF]	Rf1 [Ω]	Rd1 [Ω]	Range [V]	typ [ms]	max [ms]	Remarks	
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open	470	4.5 to 5.5	0.05	0.15	Internal C1, C2	
40141-	MURATA	MURATA	CSTCE10M0G52-R0	(10)	(10)	Open	1.0k	2.8 to 5.5	0.05	0.15	Internal
10MHz MUR			MURATA	CSTLS10M0G53-B0	(15)	(15)	Open	680	2.8 to 5.5	0.05	0.15
4MHz		MURATA	(15)	(15)	Open	3.3k	2.2 to 5.5	0.05	0.15	Internal	
	WURATA		(15)	(15)	Open	3.3k	2.2 to 5.5	0.05	0.15	C1, C2	

The oscillation stabilizing time is a period until the oscillation becomes stable after V_{DD} becomes higher than minimum operating voltage (See Fig. 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

The characteristics in the table bellow is based on the following conditions:

- (1) Use the standard evaluation board SANYO has provided.
- (2) Use the peripheral parts with indicated value externally.
- (3) The peripheral parts value is a recommended value of oscillator manufacturer

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage			
			C3	C4	Rf2	Rd2	Range	typ	max	Remarks
			[pF]	[pF]	$[\Omega]$	$[\Omega]$	[V]	[s]	[s]	
32.768kHz	SEIKO EPSON	MC-306	18	18	Open	560k	2.2 to 5.5	1.3	3.0	Applicable CL value =12.5pF

The oscillation stabilizing time is a period until the oscillation becomes stable after executing the instruction which starts the sub-clock oscillation or after releasing the HOLD mode (See Fig. 4).

Note: Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.

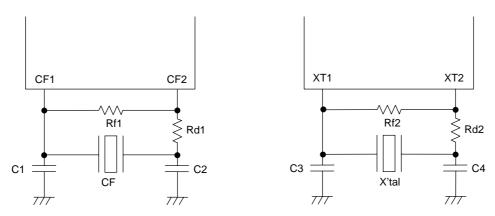
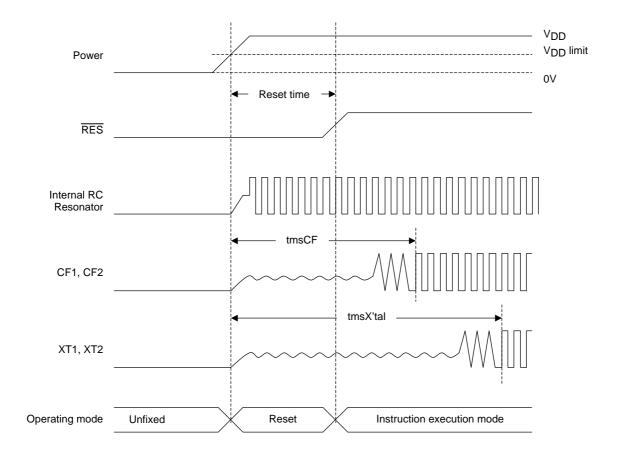



Figure 1 Ceramic Oscillator Circuit

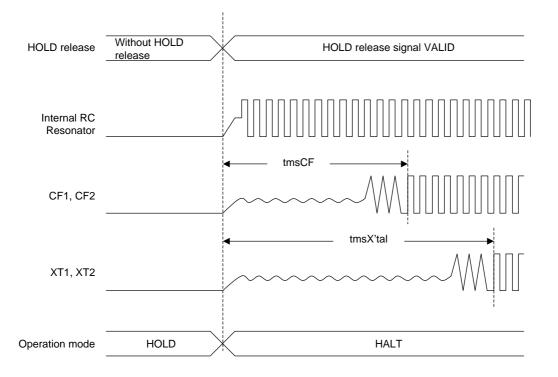
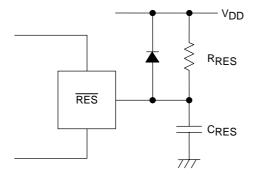

Figure 2 Crystal Oscillator Circuit

Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

Note:

Determine the value of CRES and RRES so that the reset signal is present for a period of $200\mu s$ after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 5 Reset Circuit

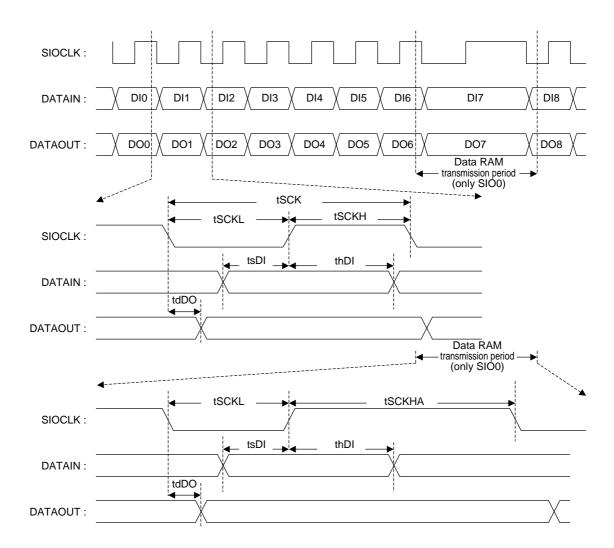


Figure 6 Serial I/O Wave form

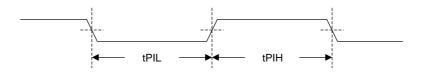


Figure 7 Pulse Input Timing Signal Waveform

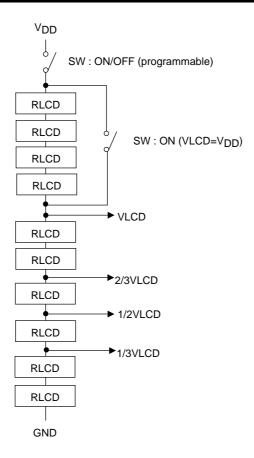


Figure 8 LCD bias resistor

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2006. Specifications and information herein are subject to change without notice.